Analytics & A/B Testing
Performance monitoring and optimization strategies for AI-powered teams.
22 min read
Intermediate level
Comprehensive Analytics
Core Metrics Dashboard
Analytics Implementation
class AnalyticsDashboard {
async getComprehensiveMetrics(timeframe: string = '7d') {
// Get overview metrics
const overview = await client.getAnalytics({
timeframe,
metrics: [
'total_conversations',
'average_response_time',
'customer_satisfaction',
'resolution_rate',
'ai_success_rate',
'escalation_rate'
]
});
// Get detailed breakdowns
const agentPerformance = await client.getAnalytics({
timeframe,
groupBy: 'agent',
metrics: ['conversations', 'avg_rating', 'response_time']
});
const channelMetrics = await client.getAnalytics({
timeframe,
groupBy: 'channel',
metrics: ['volume', 'satisfaction', 'resolution_time']
});
const timeOfDayAnalysis = await client.getAnalytics({
timeframe,
groupBy: 'hour_of_day',
metrics: ['conversation_volume', 'avg_wait_time']
});
return {
overview,
agentPerformance,
channelMetrics,
timeOfDayAnalysis
};
}
async generateInsights(metrics: any) {
// Identify performance patterns
const insights = {
topPerformers: this.findTopPerformers(metrics.agentPerformance),
bottlenecks: this.identifyBottlenecks(metrics),
recommendations: this.generateRecommendations(metrics),
alertsToInvestigate: this.findAnomalies(metrics)
};
return insights;
}
}Real-time Monitoring
Live Performance Tracking
// Set up real-time monitoring dashboard
const monitoringConfig = {
refreshInterval: 30000, // 30 seconds
alerts: [
{
metric: 'average_wait_time',
threshold: 180, // 3 minutes
condition: 'greater_than',
action: 'notify_supervisor',
channels: ['slack', 'email']
},
{
metric: 'ai_confidence_score',
threshold: 0.6,
condition: 'less_than',
frequency: 'per_hour',
action: 'review_knowledge_base'
},
{
metric: 'customer_satisfaction',
threshold: 3.5, // Out of 5
condition: 'less_than',
timeWindow: '1h',
action: 'escalate_to_quality_team'
}
]
};
// Start monitoring
const monitor = await client.startMonitoring(team.id, monitoringConfig);
// Handle alerts
monitor.on('alert', async (alert) => {
console.log('Performance alert:', alert);
switch (alert.type) {
case 'high_wait_time':
await this.scaleUpCapacity();
break;
case 'low_satisfaction':
await this.reviewRecentInteractions();
break;
case 'ai_confidence_drop':
await this.updateKnowledgeBase();
break;
}
});Advanced A/B Testing
Multi-variate Testing
Complex A/B Test Setup
// Test multiple variables simultaneously
const multiVariateTest = await client.createABTest({
name: 'Comprehensive Support Optimization',
description: 'Test multiple factors affecting customer satisfaction',
// Define test variants
variants: {
variant_a: {
name: 'Current Baseline',
config: {
agentPersonality: 'professional',
responseLength: 'medium',
escalationThreshold: 0.7,
includeEmojis: false
}
},
variant_b: {
name: 'Friendly & Concise',
config: {
agentPersonality: 'friendly',
responseLength: 'short',
escalationThreshold: 0.8,
includeEmojis: true
}
},
variant_c: {
name: 'Detailed & Technical',
config: {
agentPersonality: 'technical',
responseLength: 'long',
escalationThreshold: 0.6,
includeEmojis: false
}
}
},
// Traffic allocation
trafficDistribution: {
variant_a: 40, // Baseline gets more traffic
variant_b: 30,
variant_c: 30
},
// Success criteria
primaryMetric: 'customer_satisfaction',
secondaryMetrics: ['resolution_time', 'escalation_rate', 'first_contact_resolution'],
// Statistical requirements
minSampleSize: 500, // Minimum interactions per variant
maxDurationDays: 21, // Maximum test duration
significanceLevel: 0.95, // 95% confidence required
minEffectSize: 0.1, // 10% improvement threshold
// Targeting
targetCriteria: {
customerSegments: ['new', 'existing'],
excludeVip: false,
includeChannels: ['chat', 'email']
}
});Statistical Analysis
Test Results Analysis
// Analyze A/B test results with statistical rigor
class TestAnalyzer {
async analyzeResults(testId: string) {
const results = await client.getABTestResults(testId);
// Statistical significance calculation
const analysis = {
statisticalSignificance: results.pValue < 0.05,
confidenceInterval: results.confidenceInterval,
effectSize: this.calculateEffectSize(results),
powerAnalysis: this.calculatePower(results),
// Practical significance
businessImpact: this.calculateBusinessImpact(results),
costBenefitAnalysis: await this.analyzeCostBenefit(results),
// Recommendations
recommendation: this.generateRecommendation(results),
nextSteps: this.suggestNextSteps(results)
};
return analysis;
}
calculateBusinessImpact(results: any) {
const baseline = results.variants.variant_a;
const winner = results.winner;
if (!winner || winner === 'variant_a') return null;
const improvement = results.variants[winner];
return {
satisfactionImprovement: improvement.satisfaction - baseline.satisfaction,
timeReduction: baseline.avgResponseTime - improvement.avgResponseTime,
escalationReduction: baseline.escalationRate - improvement.escalationRate,
estimatedMonthlySavings: this.calculateMonthlySavings(improvement, baseline)
};
}
async implementWinner(testId: string) {
const results = await client.getABTestResults(testId);
if (results.statisticalSignificance >= 0.95 && results.winner) {
const winnerConfig = results.variants[results.winner].config;
// Gradually roll out winner to 100% traffic
await this.graduallRollout(testId, winnerConfig);
// Stop the test
await client.stopABTest(testId);
// Log successful optimization
await client.logOptimization({
type: 'ab_test_implementation',
testId,
improvement: results.effectSize,
implementedAt: new Date().toISOString()
});
}
}
}Continuous Optimization
Optimization Framework
Weekly Reviews
- • Analyze performance trends
- • Review escalation patterns
- • Update agent knowledge
- • Plan optimization experiments
Monthly Improvements
- • Comprehensive A/B test analysis
- • Team training based on insights
- • Knowledge base restructuring
- • Routing algorithm updates