Analytics & A/B Testing

Performance monitoring and optimization strategies for AI-powered teams.

22 min read
Intermediate level

Comprehensive Analytics

Core Metrics Dashboard

Analytics Implementation
class AnalyticsDashboard {
  async getComprehensiveMetrics(timeframe: string = '7d') {
    // Get overview metrics
    const overview = await client.getAnalytics({
      timeframe,
      metrics: [
        'total_conversations',
        'average_response_time', 
        'customer_satisfaction',
        'resolution_rate',
        'ai_success_rate',
        'escalation_rate'
      ]
    });

    // Get detailed breakdowns
    const agentPerformance = await client.getAnalytics({
      timeframe,
      groupBy: 'agent',
      metrics: ['conversations', 'avg_rating', 'response_time']
    });

    const channelMetrics = await client.getAnalytics({
      timeframe,
      groupBy: 'channel', 
      metrics: ['volume', 'satisfaction', 'resolution_time']
    });

    const timeOfDayAnalysis = await client.getAnalytics({
      timeframe,
      groupBy: 'hour_of_day',
      metrics: ['conversation_volume', 'avg_wait_time']
    });

    return {
      overview,
      agentPerformance, 
      channelMetrics,
      timeOfDayAnalysis
    };
  }

  async generateInsights(metrics: any) {
    // Identify performance patterns
    const insights = {
      topPerformers: this.findTopPerformers(metrics.agentPerformance),
      bottlenecks: this.identifyBottlenecks(metrics),
      recommendations: this.generateRecommendations(metrics),
      alertsToInvestigate: this.findAnomalies(metrics)
    };

    return insights;
  }
}

Real-time Monitoring

Live Performance Tracking
// Set up real-time monitoring dashboard
const monitoringConfig = {
  refreshInterval: 30000, // 30 seconds
  alerts: [
    {
      metric: 'average_wait_time',
      threshold: 180, // 3 minutes
      condition: 'greater_than',
      action: 'notify_supervisor',
      channels: ['slack', 'email']
    },
    {
      metric: 'ai_confidence_score',
      threshold: 0.6,
      condition: 'less_than',
      frequency: 'per_hour',
      action: 'review_knowledge_base'
    },
    {
      metric: 'customer_satisfaction',
      threshold: 3.5, // Out of 5
      condition: 'less_than',
      timeWindow: '1h',
      action: 'escalate_to_quality_team'
    }
  ]
};

// Start monitoring
const monitor = await client.startMonitoring(team.id, monitoringConfig);

// Handle alerts
monitor.on('alert', async (alert) => {
  console.log('Performance alert:', alert);
  
  switch (alert.type) {
    case 'high_wait_time':
      await this.scaleUpCapacity();
      break;
    case 'low_satisfaction':
      await this.reviewRecentInteractions();
      break;
    case 'ai_confidence_drop':
      await this.updateKnowledgeBase();
      break;
  }
});

Advanced A/B Testing

Multi-variate Testing

Complex A/B Test Setup
// Test multiple variables simultaneously
const multiVariateTest = await client.createABTest({
  name: 'Comprehensive Support Optimization',
  description: 'Test multiple factors affecting customer satisfaction',
  
  // Define test variants
  variants: {
    variant_a: {
      name: 'Current Baseline',
      config: {
        agentPersonality: 'professional',
        responseLength: 'medium',
        escalationThreshold: 0.7,
        includeEmojis: false
      }
    },
    variant_b: {
      name: 'Friendly & Concise',
      config: {
        agentPersonality: 'friendly',
        responseLength: 'short',
        escalationThreshold: 0.8,
        includeEmojis: true
      }
    },
    variant_c: {
      name: 'Detailed & Technical',
      config: {
        agentPersonality: 'technical',
        responseLength: 'long',
        escalationThreshold: 0.6,
        includeEmojis: false
      }
    }
  },

  // Traffic allocation
  trafficDistribution: {
    variant_a: 40, // Baseline gets more traffic
    variant_b: 30,
    variant_c: 30
  },

  // Success criteria
  primaryMetric: 'customer_satisfaction',
  secondaryMetrics: ['resolution_time', 'escalation_rate', 'first_contact_resolution'],
  
  // Statistical requirements
  minSampleSize: 500,        // Minimum interactions per variant
  maxDurationDays: 21,       // Maximum test duration
  significanceLevel: 0.95,   // 95% confidence required
  minEffectSize: 0.1,        // 10% improvement threshold

  // Targeting
  targetCriteria: {
    customerSegments: ['new', 'existing'],
    excludeVip: false,
    includeChannels: ['chat', 'email']
  }
});

Statistical Analysis

Test Results Analysis
// Analyze A/B test results with statistical rigor
class TestAnalyzer {
  async analyzeResults(testId: string) {
    const results = await client.getABTestResults(testId);
    
    // Statistical significance calculation
    const analysis = {
      statisticalSignificance: results.pValue < 0.05,
      confidenceInterval: results.confidenceInterval,
      effectSize: this.calculateEffectSize(results),
      powerAnalysis: this.calculatePower(results),
      
      // Practical significance
      businessImpact: this.calculateBusinessImpact(results),
      costBenefitAnalysis: await this.analyzeCostBenefit(results),
      
      // Recommendations
      recommendation: this.generateRecommendation(results),
      nextSteps: this.suggestNextSteps(results)
    };

    return analysis;
  }

  calculateBusinessImpact(results: any) {
    const baseline = results.variants.variant_a;
    const winner = results.winner;
    
    if (!winner || winner === 'variant_a') return null;

    const improvement = results.variants[winner];
    
    return {
      satisfactionImprovement: improvement.satisfaction - baseline.satisfaction,
      timeReduction: baseline.avgResponseTime - improvement.avgResponseTime,
      escalationReduction: baseline.escalationRate - improvement.escalationRate,
      estimatedMonthlySavings: this.calculateMonthlySavings(improvement, baseline)
    };
  }

  async implementWinner(testId: string) {
    const results = await client.getABTestResults(testId);
    
    if (results.statisticalSignificance >= 0.95 && results.winner) {
      const winnerConfig = results.variants[results.winner].config;
      
      // Gradually roll out winner to 100% traffic
      await this.graduallRollout(testId, winnerConfig);
      
      // Stop the test
      await client.stopABTest(testId);
      
      // Log successful optimization
      await client.logOptimization({
        type: 'ab_test_implementation',
        testId,
        improvement: results.effectSize,
        implementedAt: new Date().toISOString()
      });
    }
  }
}

Continuous Optimization

Optimization Framework

Weekly Reviews

  • • Analyze performance trends
  • • Review escalation patterns
  • • Update agent knowledge
  • • Plan optimization experiments

Monthly Improvements

  • • Comprehensive A/B test analysis
  • • Team training based on insights
  • • Knowledge base restructuring
  • • Routing algorithm updates